Copied to
clipboard

G = C24.440C23order 128 = 27

280th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.440C23, C23.661C24, C22.3272- 1+4, C22.4342+ 1+4, C428C461C2, C23.Q882C2, C23.191(C4○D4), C23.34D460C2, (C23×C4).167C22, (C2×C42).102C22, (C22×C4).581C23, C23.8Q8131C2, C23.11D4115C2, C23.10D4.60C2, C23.23D4.69C2, (C22×D4).274C22, C24.C22164C2, C2.90(C22.32C24), C24.3C22.72C2, C23.81C23115C2, C23.63C23171C2, C2.C42.365C22, C2.113(C22.45C24), C2.35(C22.56C24), C2.57(C22.34C24), C2.100(C22.47C24), C2.100(C22.46C24), C2.102(C22.36C24), (C2×C4).220(C4○D4), (C2×C4⋊C4).471C22, C22.522(C2×C4○D4), (C2×C22⋊C4).70C22, SmallGroup(128,1493)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.440C23
C1C2C22C23C24C23×C4C23.23D4 — C24.440C23
C1C23 — C24.440C23
C1C23 — C24.440C23
C1C23 — C24.440C23

Generators and relations for C24.440C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=dc=cd, f2=b, g2=cb=bc, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, ag=ga, bd=db, fef-1=be=eb, bf=fb, bg=gb, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >

Subgroups: 452 in 217 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C23.34D4, C428C4, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C24.3C22, C23.10D4, C23.Q8, C23.11D4, C23.81C23, C24.440C23
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.32C24, C22.34C24, C22.36C24, C22.45C24, C22.46C24, C22.47C24, C22.56C24, C24.440C23

Smallest permutation representation of C24.440C23
On 64 points
Generators in S64
(1 55)(2 42)(3 53)(4 44)(5 9)(6 28)(7 11)(8 26)(10 24)(12 22)(13 17)(14 36)(15 19)(16 34)(18 32)(20 30)(21 25)(23 27)(29 33)(31 35)(37 41)(38 56)(39 43)(40 54)(45 49)(46 64)(47 51)(48 62)(50 60)(52 58)(57 61)(59 63)
(1 23)(2 24)(3 21)(4 22)(5 37)(6 38)(7 39)(8 40)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 61)(34 62)(35 63)(36 64)
(1 5)(2 6)(3 7)(4 8)(9 55)(10 56)(11 53)(12 54)(13 59)(14 60)(15 57)(16 58)(17 63)(18 64)(19 61)(20 62)(21 39)(22 40)(23 37)(24 38)(25 43)(26 44)(27 41)(28 42)(29 47)(30 48)(31 45)(32 46)(33 51)(34 52)(35 49)(36 50)
(1 7)(2 8)(3 5)(4 6)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)(33 49)(34 50)(35 51)(36 52)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 55 23 27)(2 28 24 56)(3 53 21 25)(4 26 22 54)(5 9 37 41)(6 42 38 10)(7 11 39 43)(8 44 40 12)(13 61 45 33)(14 34 46 62)(15 63 47 35)(16 36 48 64)(17 29 49 57)(18 58 50 30)(19 31 51 59)(20 60 52 32)
(1 45 37 59)(2 32 38 14)(3 47 39 57)(4 30 40 16)(5 31 23 13)(6 46 24 60)(7 29 21 15)(8 48 22 58)(9 35 27 17)(10 50 28 64)(11 33 25 19)(12 52 26 62)(18 56 36 42)(20 54 34 44)(41 63 55 49)(43 61 53 51)

G:=sub<Sym(64)| (1,55)(2,42)(3,53)(4,44)(5,9)(6,28)(7,11)(8,26)(10,24)(12,22)(13,17)(14,36)(15,19)(16,34)(18,32)(20,30)(21,25)(23,27)(29,33)(31,35)(37,41)(38,56)(39,43)(40,54)(45,49)(46,64)(47,51)(48,62)(50,60)(52,58)(57,61)(59,63), (1,23)(2,24)(3,21)(4,22)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64), (1,5)(2,6)(3,7)(4,8)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(21,39)(22,40)(23,37)(24,38)(25,43)(26,44)(27,41)(28,42)(29,47)(30,48)(31,45)(32,46)(33,51)(34,52)(35,49)(36,50), (1,7)(2,8)(3,5)(4,6)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,55,23,27)(2,28,24,56)(3,53,21,25)(4,26,22,54)(5,9,37,41)(6,42,38,10)(7,11,39,43)(8,44,40,12)(13,61,45,33)(14,34,46,62)(15,63,47,35)(16,36,48,64)(17,29,49,57)(18,58,50,30)(19,31,51,59)(20,60,52,32), (1,45,37,59)(2,32,38,14)(3,47,39,57)(4,30,40,16)(5,31,23,13)(6,46,24,60)(7,29,21,15)(8,48,22,58)(9,35,27,17)(10,50,28,64)(11,33,25,19)(12,52,26,62)(18,56,36,42)(20,54,34,44)(41,63,55,49)(43,61,53,51)>;

G:=Group( (1,55)(2,42)(3,53)(4,44)(5,9)(6,28)(7,11)(8,26)(10,24)(12,22)(13,17)(14,36)(15,19)(16,34)(18,32)(20,30)(21,25)(23,27)(29,33)(31,35)(37,41)(38,56)(39,43)(40,54)(45,49)(46,64)(47,51)(48,62)(50,60)(52,58)(57,61)(59,63), (1,23)(2,24)(3,21)(4,22)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,64), (1,5)(2,6)(3,7)(4,8)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(21,39)(22,40)(23,37)(24,38)(25,43)(26,44)(27,41)(28,42)(29,47)(30,48)(31,45)(32,46)(33,51)(34,52)(35,49)(36,50), (1,7)(2,8)(3,5)(4,6)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(33,49)(34,50)(35,51)(36,52), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,55,23,27)(2,28,24,56)(3,53,21,25)(4,26,22,54)(5,9,37,41)(6,42,38,10)(7,11,39,43)(8,44,40,12)(13,61,45,33)(14,34,46,62)(15,63,47,35)(16,36,48,64)(17,29,49,57)(18,58,50,30)(19,31,51,59)(20,60,52,32), (1,45,37,59)(2,32,38,14)(3,47,39,57)(4,30,40,16)(5,31,23,13)(6,46,24,60)(7,29,21,15)(8,48,22,58)(9,35,27,17)(10,50,28,64)(11,33,25,19)(12,52,26,62)(18,56,36,42)(20,54,34,44)(41,63,55,49)(43,61,53,51) );

G=PermutationGroup([[(1,55),(2,42),(3,53),(4,44),(5,9),(6,28),(7,11),(8,26),(10,24),(12,22),(13,17),(14,36),(15,19),(16,34),(18,32),(20,30),(21,25),(23,27),(29,33),(31,35),(37,41),(38,56),(39,43),(40,54),(45,49),(46,64),(47,51),(48,62),(50,60),(52,58),(57,61),(59,63)], [(1,23),(2,24),(3,21),(4,22),(5,37),(6,38),(7,39),(8,40),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,61),(34,62),(35,63),(36,64)], [(1,5),(2,6),(3,7),(4,8),(9,55),(10,56),(11,53),(12,54),(13,59),(14,60),(15,57),(16,58),(17,63),(18,64),(19,61),(20,62),(21,39),(22,40),(23,37),(24,38),(25,43),(26,44),(27,41),(28,42),(29,47),(30,48),(31,45),(32,46),(33,51),(34,52),(35,49),(36,50)], [(1,7),(2,8),(3,5),(4,6),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48),(33,49),(34,50),(35,51),(36,52)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,55,23,27),(2,28,24,56),(3,53,21,25),(4,26,22,54),(5,9,37,41),(6,42,38,10),(7,11,39,43),(8,44,40,12),(13,61,45,33),(14,34,46,62),(15,63,47,35),(16,36,48,64),(17,29,49,57),(18,58,50,30),(19,31,51,59),(20,60,52,32)], [(1,45,37,59),(2,32,38,14),(3,47,39,57),(4,30,40,16),(5,31,23,13),(6,46,24,60),(7,29,21,15),(8,48,22,58),(9,35,27,17),(10,50,28,64),(11,33,25,19),(12,52,26,62),(18,56,36,42),(20,54,34,44),(41,63,55,49),(43,61,53,51)]])

32 conjugacy classes

class 1 2A···2G2H2I2J4A···4P4Q···4U
order12···22224···44···4
size11···14484···48···8

32 irreducible representations

dim1111111111112244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+42- 1+4
kernelC24.440C23C23.34D4C428C4C23.8Q8C23.23D4C23.63C23C24.C22C24.3C22C23.10D4C23.Q8C23.11D4C23.81C23C2×C4C23C22C22
# reps1111122112218431

Matrix representation of C24.440C23 in GL6(𝔽5)

010000
100000
004000
004100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
400000
010000
004200
004100
000030
000003
,
040000
100000
004000
000400
000040
000001
,
300000
030000
002000
002300
000001
000010

G:=sub<GL(6,GF(5))| [0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,4,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,4,0,0,0,0,2,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,2,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C24.440C23 in GAP, Magma, Sage, TeX

C_2^4._{440}C_2^3
% in TeX

G:=Group("C2^4.440C2^3");
// GroupNames label

G:=SmallGroup(128,1493);
// by ID

G=gap.SmallGroup(128,1493);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,672,253,120,758,723,268,1571,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d*c=c*d,f^2=b,g^2=c*b=b*c,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,a*g=g*a,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽